Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Jian-Ming Gu, ${ }^{\text {a }}$ You-Chu Zhang ${ }^{\text {b }}$ and Xiu-Rong Hu*

${ }^{\text {a }}$ Central Laboratory, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry,
Shaoxing College of Arts and Sciences,
Shaoxing, Zhejiang 312000, People's Republic of China

Correspondence e-mail:
huxiurong@yahoo.com.cn

Key indicators
Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.045$
$w R$ factor $=0.104$
Data-to-parameter ratio $=10.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Phenyl-2-(toluene-4-sulfonyl)ethanone

The title compound, $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$, displays a stair-like arrangement, with the tolyl and phenyl rings forming the steps. The S atom lies in the plane of the tolyl ring, whereas the ketone group $\mathrm{CO}\left(\mathrm{CH}_{2}\right)$ is coplanar with the phenyl ring.

Comment

β-Keto sulfones have attracted considerable interest, because they are versatile intermediates for the synthesis of complex natural products and biologically active compounds (Simpkins, 1993; Fuchs \& Braisch, 1986).

As shown in Fig. 1, the title compound, (I), displays a stairlike arrangement. The two steps contain the tolyl and phenyl rings linked by the $\mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{CO}$ group. Atoms $\mathrm{C} 2, \mathrm{O} 1$ and C 1 of the ketone group $\mathrm{CO}\left(\mathrm{CH}_{2}\right)$ are nearly coplanar with the phenyl ring; indeed, these atoms deviate from the mean plane of the phenyl ring by $0.009,-0.06$ and $0.153 \AA$, respectively. This planarity is certainly the result of π-system conjugation. The S atom of the sulfoxide group is coplanar with the tolyl ring (deviation from the tolyl plane $0.008 \AA$).

(I)

The two mean planes forming the steps are nearly parallel to each other, with a dihedral angle between them of 3.3°. The distance of $1.86 \AA$ between these two planes is close to the value of 1.783 (2) \AA observed for the $\mathrm{C} 1-\mathrm{S} 1$ bond.

The packing of molecules in the unit cell is governed by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, as shown in Fig. 2.

Experimental

Sodium p-toluenesulfinate ($3.72 \mathrm{~g}, 21 \mathrm{mmol}$) in 1,2-dimethoxyethane $(25 \mathrm{ml})$ was added to a solution of 2-bromo-1-phenylethanone

Figure 1
A view of the molecular structure of (I), with 30% probability displacement ellipsoids.

Received 10 May 2004
Accepted 24 May 2004
Online 29 May 2004
\qquad

Figure 2
The crystal packing of (I), showing the weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions as dashed lines. Displacement ellipsoids are drawn at the 20% probability level.
$(3.96 \mathrm{~g}, \quad 20 \mathrm{mmol})$ and tetrabutylammonium bromide $(0.33 \mathrm{~g}$, 1.0 mmol). The mixture was heated under reflux for 30 min . After cooling, iced water was added and the white precipitate which formed was collected, washed with water and recrystallized from ethanol (Wildeman \& Leusen, 1979) to obtain single crystals of (I) suitable for X-ray analysis.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$
$M_{r}=274.33$
Monoclinic, $P 2_{1 / c}$
$a=15.8077$ (7) \AA
$b=5.4113$ (2) \AA
$c=15.8940(9) \AA$
$\beta=95.343(2)^{\circ}$
$V=1353.7$ (1) \AA^{3}
$Z=4$

Data collection

Rigaku R-AXIS RAPID
diffractometer

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.862, T_{\text {max }}=0.967$
10775 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.104$
$S=1.01$
1729 reflections [but 1729 above?]
172 parameters
H-atom parameters constrained
$D_{x}=1.346 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 9916 reflections
$\theta=1.7-27.3^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=293.1 \mathrm{~K}$
Chunk, colourless
$0.40 \times 0.24 \times 0.14 \mathrm{~mm}$

2861 independent reflections
1729 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=27.3^{\circ}$
$h=-20 \rightarrow 20$
$k=-6 \rightarrow 6$
$l=-20 \rightarrow 20$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0644 P)^{2}\right. \\
\quad+0.233 P] \text { where } P= \\
0.333 \max \left(F_{o}^{2}, 0\right)+0.667 F_{c}^{2} \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{gathered}
$$

Table 1
Selected geometric parameters ($\mathrm{A}^{\circ},{ }^{\circ}$).

S1-O2	$1.428(2)$	$\mathrm{O} 1-\mathrm{C} 2$	$1.210(3)$
$\mathrm{S} 1-\mathrm{O} 3$	$1.433(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.520(3)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.782(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.483(4)$
$\mathrm{S} 1-\mathrm{C} 9$	$1.756(3)$		
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3$	$118.87(14)$	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$109.94(18)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	$107.26(13)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$117.5(2)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 1$	$108.37(13)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.5(2)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 9$	$108.90(13)$	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$122.0(2)$
O3-S1-C9	$108.75(13)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$123.2(2)$
C1-S1-C9	$103.63(12)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.52	$3.341(3)$	147
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.46	$3.388(3)$	171

Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $x, \frac{3}{2}-y, z-\frac{1}{2}$.
The H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ $0.96-0.98 \AA$, and were included in the final cycles of the refinement in a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the carrier atoms.

Data collection: PROCESS-AUTO (Rigaku, 2004); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fuchs, P. L. \& Braisch, T. F. (1986). Chem. Rev. 86, 903-917.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC \& Rigaku Corporation (2004). PROCESS-AUTO and CrystalStructure (Version 3.6.0). Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Simpkins, N. S. (1993). Sulphones in Organic Synthesis. Oxford: Pergamon Press.
Watkin, D. J., Prout, C. K., Carruthers, J. R. \& Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, University of Oxford, England.
Wildeman, J. \& Leusen, A. M. (1979). Synthesis, pp. 733-734.

